
Finger Painting
with Planets

Tim Thompson
tjt@nosuch.com

What is it?

 Installation for people to play with

 Generates music and graphics simultaneously

 Controller with buttons, knobs, LCD, multitouch pad

 Fingers on multitouch pad trigger music or graphics

 Graphics motion is simulated gravitational attraction

 Collisions of planets trigger music

 Musical keyboard controls (only) selection of notes

Appearances

Yuri's Night 2008

 Maker Faire 2008

 Night Light at Climate Theater

Anon Salon at Climate Theater

 SubZERO street fair, ZERO1 Festival

 Starry Night at Villa Montalvo

 Burning Man 2008

User interface was adjusted/simplified each time

Big Pieces

 KeyKit – input and realtime processing

 Plogue Bidule – VST host for sounds

 Salvation – Freeframe host for visuals

 Planets – Freeframe plugin (embedded Python)

 Cairo – drawing on bitmap (from Python)

 Chipmunk – Physics simulation (from Python)

 OpenCV – raster manipulation (from C)

 OSC – communication between KeyKit and Planets

A Mashup without the Web

 Re-using and combining large pieces of software

 Explosion of large pieces of freely available code

 Protocols and mechanisms are relatively standardized

 Good separation of functionality

APIs are now front and center

 Ease of integration is getting better

 Requires care in selection, one bad apple...

Multiple Languages

 Attempted to avoid it, now embraced

 Each language has pros/cons in:

• Library availability

• Device I/O availability

• Robustness

• Ease of Development

• Familiarity

• Expense

What’s connected to What

Custom Controller

Controllers In Use

Examples of Visual Output

Examples of Visual Output

Examples of Visual Output

Examples of Visual Output

Examples of Visual Output

Examples of Visual Output

Examples of Visual Output

User Interface

 4 buttons, 8 knobs, LCD, multitouch pad

 Knob style: endless rotation vs. absolute position ?

 Hardware availability influenced the choice - absolute

 LCD used to 'label' the 8 knobs

 First iteration: many pages of parameters

 Second iteration: 2 pages of parameters (graphics &
music)

 Third iteration: 1 page of parameters

 Expert mode allows access to all parameters

Code Pieces

 Languages

– KeyKit

– C/C++

– Python

 Toolkits

– Chipmunk (called from Python)

– OpenCV (called from C/C++)

– Cairo (called from Python)

Interface Pieces

 Standards

– MIDI

– Freeframe

– OSC

 Hardware

– Fingerworks iGesture multitouch pad (USB)

– Doepfer USB64 MIDI control board (USB)

– Pertelian LCD (USB)

Application Pieces

 Applications

– KeyKit

– Salvation

– Plogue Bidule

 Plugins

– VST soft synths

– Freeframe video processors

– Planets plugin

My Pieces

 Decisions on what software and protocols to use

 KeyKit code for input processing and LCD control

 C and Python code in “Planets” Freeframe plugin

– OpenCV for bitmap formatting/fading (from C)

– OSC for 2-way communication with KeyKit (from C
and Python)

– Chipmunk for physics (from Python)

– Cairo for 2d graphics (from Python)

What’s connected to What

Event Routing

 Finger events are detected by Keykit, and either trigger
sounds directly or get passed to Planets plugin via OSC,
instantiating planets in Python code

 Python code simulates physics/gravity, moving planets

 When planets collide, a visual 'tracer' is generated
(horizontal/vertical lines), and OSC is sent back to KeyKit to
trigger a sound

 KeyKit sends MIDI to Plogue/VSTs to make sounds

 Knob and button movements are read by KeyKit as MIDI
and processed by control logic in Keykit, occasionally
sending OSC to Planets plugin to control its parameters

 KeyKit manipulates LCD display as knobs/buttons are used

 Music keyboard sends MIDI to KeyKit, for setting scales

Processing

 KeyKit has a MIDI looper, optionally enabled by a knob

 Generated MIDI is periodically transposed, in a cycle

 Planet motion is controlled by gravity and inertia in Python,
invoked every frame (15 per second or so) from within a
Freeframe plugin running inside Salvation

 Visual are generated by a serial chain of 3 Freeframe plugins:

 Planets plugin does the initial drawing/movement, controlled
by OSC from KeyKit

 2 other Freeframe plugins are controlled by MIDI

 MIDI is sent from KeyKit to Salvation in order to select
which 2 specific Freeframe plugins (from a set of several
dozen) are used, and to control their parameters

Using Python from a Freeframe plugin

 “Planets” is the freeframe plugin, written in C/C++

 When it first initializes, the freeframe plugin:

 Instantiates python

 Recompiles/reloads nosuch.particles python module (so python
code can be changed without restarting freeframe host)

 Calls python to instantiate cairo surface and context

 Retrieves a C-accessible surface and creates a C-accessible
OpenCV image (IplImage)

Using Python from a Freeframe plugin

 On every video frame, the freeframe plugin:

• Calls python to advance time, update planet positions and
movement, and draw current planets onto the cairo surface

• After returning to C code, the cairo surface is added to an
accumulation buffer/image which is then progressively faded,
using OpenCV routines.

 On every received OSC message, the freeframe plugin:

• Sometimes adjusts parameters in the C code, but usually...

• Forwards the OSC message intact to python to process it -
changing parameter values, creating new planets, clearing, etc.

Other details

 Used PyBufferProcs to get access to PyCairo image surface

 Need to convert RGBA (from cairo) to RGB (for freeframe):

• cvCvtColor(cairoimage1,accum1,CV_RGBA2RGB);

Python access to Chipmunk physics

import pymunk._chipmunk as cp

cp.cpInitChipmunk()

space = cp.cpSpaceNew()

moment = cp.cpMomentForCircle(mass, inr, outr, cpvzero())

body = cp.cpBodyNew(mass, moment)

cp.cpBodyResetForces(body)

cp.cpSpaceAddBody(space, body)

s = cp.cpCircleShapeNew(body, radius, cpvzero())

cp.cpSpaceAddShape(space, s)

cp.cpBodyApplyForce(body, force, cpvzero())

cp.cpSpaceStep(space, deltatime)

Python access to Cairo drawing

import cairo

s = cairo.ImageSurface(cairo.FORMAT_ARGB32,width,height)

c = cairo.Context(s)

c.set_source_rgba(r, g, b, a)

c.set_operator(cairo.OPERATOR_SOURCE)

c.set_line_width(width)

c.scale(sx, sy)

c.translate(tx, ty)

c.move_to(x,y)

c.curve_to(x1,y1, x2,y2, x3,y3)

c.rel_line_to(x,y)

c.fill()

c.stroke()

In Hindsight, the Good Things

 Python integration with low-level code works well, is
robust, and has good syntax/error reporting

 Ability to change Python code without restarting the
larger application is very nice

 Bitmap manipulation with multiple toolkits can work

 OSC is a nice simple API mechanism, and a good
“side-channel” for controlling Freeframe plugins

 Local sockets for inter-app API invocation good for:

– Flexibility in choice of languages and applications

– Portability, Firewalling, Robustness

– Separating device I/O from graphics/audio output

In Hindsight, the Bad Things

 Devices and drivers are often the weak link

 Things that work in isolation may not work simultaneously

 The more devices you have, the more problems you have

 Always try to have a quick way of resetting/restoring things
that is controllable from the primary interface

 Absolute knob style is a pain

 Version control is a pain with so many pieces

 Giving it to other people is difficult

 OS dependencies

Finger Painting
with Planets

Tim Thompson
tjt@nosuch.com

