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What is it?

 Installation for people to play with

 Generates music and graphics simultaneously

 Controller with buttons, knobs, LCD, multitouch pad

 Fingers on multitouch pad trigger music or graphics

 Graphics motion is simulated gravitational attraction

 Collisions of planets trigger music

 Musical keyboard controls (only) selection of notes



Appearances

Yuri's Night 2008

 Maker Faire 2008

 Night Light at Climate Theater

Anon Salon at Climate Theater

 SubZERO street fair, ZERO1 Festival

 Starry Night at Villa Montalvo

 Burning Man 2008

User interface was adjusted/simplified each time



Big Pieces

 KeyKit – input and realtime processing

 Plogue Bidule – VST host for sounds

 Salvation – Freeframe host for visuals

 Planets – Freeframe plugin (embedded Python)

 Cairo – drawing on bitmap (from Python)

 Chipmunk – Physics simulation (from Python)

 OpenCV – raster manipulation (from C)

 OSC – communication between KeyKit and Planets



A Mashup without the Web

 Re-using and combining large pieces of software

 Explosion of large pieces of freely available code

 Protocols and mechanisms are relatively standardized

 Good separation of functionality

APIs are now front and center

 Ease of integration is getting better

 Requires care in selection, one bad apple...



Multiple Languages

 Attempted to avoid it, now embraced

 Each language has pros/cons in:

• Library availability

• Device I/O availability

• Robustness

• Ease of Development

• Familiarity

• Expense



What’s connected to What



Custom Controller



Controllers In Use



Examples of Visual Output
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User Interface

 4 buttons, 8 knobs, LCD, multitouch pad

 Knob style: endless rotation vs. absolute position ?

 Hardware availability influenced the choice - absolute

 LCD used to 'label' the 8 knobs

 First iteration: many pages of parameters

 Second iteration: 2 pages of parameters (graphics & 
music)

 Third iteration: 1 page of parameters

 Expert mode allows access to all parameters



Code Pieces

 Languages

– KeyKit

– C/C++

– Python

 Toolkits

– Chipmunk (called from Python)

– OpenCV (called from C/C++)

– Cairo (called from Python)



Interface Pieces

 Standards

– MIDI

– Freeframe

– OSC

 Hardware

– Fingerworks iGesture multitouch pad (USB)

– Doepfer USB64 MIDI control board (USB)

– Pertelian LCD (USB)



Application Pieces

 Applications

– KeyKit

– Salvation

– Plogue Bidule

 Plugins

– VST soft synths

– Freeframe video processors

– Planets plugin



My Pieces

 Decisions on what software and protocols to use

 KeyKit code for input processing and LCD control

 C and Python code in “Planets” Freeframe plugin

– OpenCV for bitmap formatting/fading (from C)

– OSC for 2-way communication with KeyKit (from C 
and Python)

– Chipmunk for physics (from Python)

– Cairo for 2d graphics (from Python)



What’s connected to What



Event Routing

 Finger events are detected by Keykit, and either trigger 
sounds directly or get passed to Planets plugin via OSC, 
instantiating planets in Python code

 Python code simulates physics/gravity, moving planets

 When planets collide, a visual 'tracer' is generated 
(horizontal/vertical lines), and OSC is sent back to KeyKit to 
trigger a sound

 KeyKit sends MIDI to Plogue/VSTs to make sounds

 Knob and button movements are read by KeyKit as MIDI 
and processed by control logic in Keykit, occasionally 
sending OSC to Planets plugin to control its parameters

 KeyKit manipulates LCD display as knobs/buttons are used

 Music keyboard sends MIDI to KeyKit, for setting scales



Processing

 KeyKit has a MIDI looper, optionally enabled by a knob

 Generated MIDI is periodically transposed, in a cycle

 Planet motion is controlled by gravity and inertia in Python, 
invoked every frame (15 per second or so) from within a 
Freeframe plugin running inside Salvation

 Visual are generated by a serial chain of 3 Freeframe plugins:

 Planets plugin does the initial drawing/movement, controlled 
by OSC from KeyKit

 2 other Freeframe plugins are controlled by MIDI

 MIDI is sent from KeyKit to Salvation in order to select 
which 2 specific Freeframe plugins (from a set of several 
dozen) are used, and to control their parameters



Using Python from a Freeframe plugin

 “Planets” is the freeframe plugin, written in C/C++

 When it first initializes, the freeframe plugin:

 Instantiates python

 Recompiles/reloads nosuch.particles python module (so  python 
code can be changed without restarting freeframe host)

 Calls python to instantiate cairo surface and context

 Retrieves a C-accessible surface and creates a C-accessible 
OpenCV image (IplImage)



Using Python from a Freeframe plugin

 On every video frame, the freeframe plugin:

• Calls python to advance time, update planet positions and 
movement, and draw current planets onto the cairo surface

• After returning to C code, the cairo surface is added to an 
accumulation buffer/image which is then progressively faded, 
using OpenCV routines.

 On every received OSC message, the freeframe plugin:

• Sometimes adjusts parameters in the C code, but usually...

• Forwards the OSC message intact to python to process it -
changing parameter values, creating new planets, clearing, etc.



Other details

 Used PyBufferProcs to get access to PyCairo image surface

 Need to convert RGBA (from cairo) to RGB (for freeframe):

• cvCvtColor(cairoimage1,accum1,CV_RGBA2RGB);



Python access to Chipmunk physics

import pymunk._chipmunk as cp

cp.cpInitChipmunk()

space = cp.cpSpaceNew()

moment = cp.cpMomentForCircle(mass, inr, outr, cpvzero())

body = cp.cpBodyNew(mass, moment)

cp.cpBodyResetForces(body)

cp.cpSpaceAddBody(space, body)

s = cp.cpCircleShapeNew(body, radius, cpvzero())

cp.cpSpaceAddShape(space, s)

cp.cpBodyApplyForce(body, force, cpvzero())

cp.cpSpaceStep(space, deltatime)



Python access to Cairo drawing

import cairo

s = cairo.ImageSurface(cairo.FORMAT_ARGB32,width,height)

c = cairo.Context(s)

c.set_source_rgba(r, g, b, a)

c.set_operator(cairo.OPERATOR_SOURCE)

c.set_line_width(width)

c.scale(sx, sy)

c.translate(tx, ty)

c.move_to(x,y)

c.curve_to(x1,y1, x2,y2, x3,y3)

c.rel_line_to(x,y)

c.fill()

c.stroke()



In Hindsight, the Good Things

 Python integration with low-level code works well, is 
robust, and has good syntax/error reporting

 Ability to change Python code without restarting the 
larger application is very nice

 Bitmap manipulation with multiple toolkits can work

 OSC is a nice simple API mechanism, and a good 
“side-channel” for controlling Freeframe plugins

 Local sockets for inter-app API invocation good for:

– Flexibility in choice of languages and applications

– Portability, Firewalling, Robustness

– Separating device I/O from graphics/audio output 



In Hindsight, the Bad Things

 Devices and drivers are often the weak link

 Things that work in isolation may not work simultaneously

 The more devices you have, the more problems you have

 Always try to have a quick way of resetting/restoring things 
that is controllable from the primary interface

 Absolute knob style is a pain

 Version control is a pain with so many pieces

 Giving it to other people is difficult

 OS dependencies
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