
No Such Media

Tim Thompson

http://timthompson.com

me@timthompson.com

Aesthetic

 Maker

 Cross functional (software, hardware, music, visual)

 Experimenting with new things

 Fail early and often

 Deploy and document

– Performances

– Installations

– Web site

 Refine, Rework, Remix

Motivation

 Fun

 Freedom

 Personal taste

 Learning

 Socialization

 Deadlines

Interests

 Algorithmic composition

 Selective Randomization

 Languages

 User Interfaces (both soft and hard)

 Networking

Initial Training

Musician

 Software Engineer

… and then there was MIDI

KeyKit

 Textual programming language – procedural,

interpreted, multi-tasking, graphics, object-oriented

 Specialized for MIDI algorithmic and realtime

manipulation, first-class “phrase” data type,

realtime scheduling

 Multi-window graphical user interface, pull-off

menus and buttons, tools include multi-track editor,

drum pattern editor

 Entire user interface and all tools written in the

language and provided as source code in library,

easily customized and extended

Development History

 1.0 - BASIC-like

 2.0 - realtime

 3.0 - grammer, rewrite, fast enough to avoid built-ins

 4.0 - graphics

 5.0 - first multi-window attempts, multi-tasking, fifos,

tools using tasks/fifos

 6.0 - object-oriented, multi-window interface

completely rewritten, pull-off menus/buttons

 7.0 – support for multiple MIDI ports

MIDI Phrase is a first-class data type

 Time-ordered list of MIDI “notes” - can be system-

exclusives, isolated note-on, isolated note-off, or full note

with duration

 Constant value syntax

 ph = ‘c e g’ # ph is a c major triad

 ph = ‘dc2,e,f’ # ph is an arpeggio, channel 2

 Structure-like manipulation of attributes :

 ph.dur = 1b # all note durations = 1 beat

 ph.pitch += 12 # transposed up an octave

Phrase Operations

 Serial concatenation
 ph = ph1 + ph2

 Parallel merging
 ph = ph1 | ph2

 Removing notes
 ph = ph1 - ph2

 Matching notes
 ph = ph1 & ph2

 Nth note
 ph = ph1 % n

Phrase Operations - the “select”

ph = ph1 { ??.pitch > 60 }

ph = ph1 { ??.dur > 1b }

ph = ph1 { isonbeat(??,4b) }

ph = ph1 { ??.number < 4 }

ph = ph1 { rand(3)==0 }

ph = ph1 { isinscale(??,scale) }

ph = ph - ph { ??.type == MIDIBYTES }

Other Language Features

 Variable arguments - … , nargs(), argv(), varg()

 Fifos and locking

 Objects

 Graphics - primitive elements are:
 lines, rectangles, text, windows,
 phrase windows, menus

 Machine-dependent hook – mdep() – used to
add/expose non-portable features

 TCP/IP hooks available for Windows and Linux,
network interaction

Tasks and I/O

 All tasks are time-shared evenly, interleaved at the
interpreted instruction level

 Scheduled MIDI output events are tasks as well, but
performance can’t be degraded by other tasks

 MIDI input is always being recorded, available in a
global variable for easy and immediate processing

 MIDI, mouse, and console input events can be read
from special fifos

 Reading a fifo (with no data waiting) blocks a task

 lock() and unlock() used for exclusion and
synchronization

KeyKit - the GUI

 Completely implemented with Keykit code, even
pull-off menus, dragging of windows, window-
manager-like operations, etc.

 Each tool is independent, with consistent methods for
resizing and inter-tool communication

 Consistent saving/restoring mechanism of individual
tools is highly leveraged, used for:

– Copying between like tools

– Copy/paste of entire tools

– Moving tools between “pages”

– Manipulating of tools within tools

– Broadcasting of a tool and its contents across a network

Group (multi-track seq)

Chords

Kboom (drum patts)

Kboom

Riff
Controller

Echo

BASIC TOOLS

Mouse Matrix

Bounce

Boomix

Roller Derby
Grab Bag

Techno

TOOL VARIETY

Interactive Tool - Picture This

 Use RGB
values of an
image in
various ways

Then I moved to Silicon Valley…

 Woodstockhausen

 Skronkathon

 Y2Kx LoopFest

 Dorkbot

 Illuminated Corridor

 Maker Faire

 BArCMuT (Bay Area Computer Music Technology)
Meetup

 Visual Music Meetup

 LoveTechSF

 SHARE San Jose

 Zero1.org, ZER01, 01SJ Biennial, SubZero Street Faire

An Algorithmic music “instrument” used for
“21st Century Caffeine-based Life Form” at Woodstockhausen 2000

Oops, I made a typo

 Woodstockhausen

2001

 All-QWERTY

Performance

Performances with dance pads

 Woodstockhausen performance – Happy Feet

– Done entirely on 4 dance pads

– No hands, No light, and EL-wire-outlined pants

 With Wireless QWERTY keyboard

The Mother of All Opportunities

Dance Pads at Burning Man 2002

Movie

Burning Man 2003

Dancing under the Stars of Lyra

Movie1

Movie2

Dance Pads at Burning Man 2003

 Electronics and
dance pads were
very reliable

 Generator was not

Burning Man 2004 - Radio Free Quasar

Audio

Radio Free Quasar at Burning Man

Radio Free Quasar at Burning Man

Radio Free Quasar – the pieces

 10 robust VST plugins chained serially

 Collection of WAV files

 Python program:

– selects wave files

– enables/disables/randomizes VST plugins

– allows interactive control from keyboard

 Big knob on radio sends keypresses

 Automatic randomization if no user input

VST Manipulation in Python

 nosuch.vstutil module

– AudioSnippet

– AudioLoop

– PaAudioDevice

– VstPlugin

 methods: can_receive_midi, is_synth, is_vst2, name,

num_inputs, num_outputs, num_params, num_programs,

param_label, param_display, param_name,

program_name, send_midi, get_enable, set_enable,

set_param, set_program, set_input

Basic use of nosuch.vstutil.VstPlugin

 Instantiate it:
 v = VstPlugin(dll="ringmod.dll")

 Connect its input to the output of other plugins
 v.setinput(v2)

 Randomize its parameters
 n = v.num_params()

 for i in range(n):

 v.set_param(i,random())

Connecting a VST synth and effect

effect = VstPlugin(dll="BJ Ringmodulator.dll")

synth = VstPlugin(dll="StrataVar.dll")

Connect output of synth to effec

effect.setinput(synth)

Open audio and connect effect’s output to it

a.open()

a.start()

a.attach(effect)

Send random MIDI notes to synth

while randomizing parameters of both VSTs

for i in range(100):

 time.sleep(2.0)

 pitch = int(random() * 128) % 128

 vstrandparam(synth)

 vstrandparam(effect) # see next slide

 synth.send_midi(1,pitch,8000,80)

 Algorithms create lots of possibilities, but I choose

which ones to keep

 Example using L-Systems (fractal expressions)

– 23 Shots of Expresso

 Example using the digits of PI (3.14…)

– Irrational

– Irrational Too

Other Algorithmic music (using KeyKit)

Graphics gets interesting

 Affordable equipment

– Webcams

– Video mixers

– Security cameras

– Video processors

 GPUs and CPUs fast enough for realtime

Visual Music experiments

 Python used for OpenGL support and convenience

 KeyKit is interface to input devices (MIDI, iGesture)

 Messages sent over TCP/IP to Python process

 MIDI sliders and buttons control graphics parameters

 MIDI from drummer triggers graphics

 Text typed interactively is used as graphics

 Words typed interactively can immediately search

clip-art database whose images are then used as graphics

 Used in dud (improvised art ensemble) - www.dudland.com

iGesture pad

 www.fingerworks.com

 Inexpensive multi-touch pad

 Excellent responsiveness

 KeyKit interface to event stream

 Event data: x, y, proximity, eccentricity, orientation,
contacts, device, finger, hand, xvelocity, yvelocity

 Multiple pads can be used simultaneously

http://www.fingerworks.com/igesture_tech.html

A Custom Controller for Performing Graphics

 Fingerworks iGesture pads

– Multitouch with area-detection

– Extremely responsive

Dud - examples

 Chico : multitouch drawing, Python OpenGL
graphics, webcam

– movie

 Illuminated Corridor : Photoshop realtime drawing,
one camera, dancer

– movie

 Novato : two cameras

– movie

 Musicians’ Union : camera, Python OpenGL graphics

– movie1

– movie2

Dud - examples

 John Patrick’s : drum-triggered graphics, camera

– movie

 Musician’s Union : dancer, FreeFrame, tracking

– movie

 21 Grand : dancers, indoor/outdoor cameras, four
projectors, FreeFrame video looping

– movie

Different Skies 2007

 20 Electronic musicians and one visual performer gathered
for a week-long workshop at Arcosanti in Arizona

 Music was composed for a concert at the end of the week

 Interactive graphics (no clips) was composed to match each
piece of music

 The graphics performance rig:

– Interview

 The two-hour concert:

– Movie

 A time-compressed video of the two-hour concert:

– Two hours in two minutes

Different Skies 2007

Other uses of Fingerworks iGesture pads

 Finger Fresco at
Maker Faire 2007

Movie

Finger Painting with Planets

 Maker Faire 2008

Movie

Finger Painting with Planets

 Installation for people to play with

 Generates music and graphics simultaneously

 Controller with buttons, knobs, LCD, multitouch pad

 Fingers on pad trigger music or graphics

 Graphics motion is simulated gravitational attraction

 Collisions of planets trigger music

 Musical keyboard controls (only) selection of notes

Big Pieces

 KeyKit – input and realtime processing

 Plogue Bidule – VST host for sounds

 Salvation – Freeframe host for visuals

 Planets – Freeframe plugin

 Cairo – drawing on bitmap (from Python)

 Chipmunk – Physics simulation (from Python)

 OpenCV – raster manipulation (from C)

 OSC – communication between KeyKit and Planets

Multiple Languages

 Once avoided, now embraced

 Library availability

 Device I/O availability

 Robustness

 Ease of Development

 Familiarity

In Hindsight, the Good Things

 Python integration in low-level code works well

 Bitmap manipulation with multiple toolkits can work

 OSC is a simple and lightweight transport format

 Local sockets for inter-app API invocation good for:

– Flexibility in choice of languages and applications

– Portability

– Firewalling

– Robustness

– Separating device I/O from graphics/audio output

Finger Painting with Planets

 Night Lights show at Climate Theater

Movie

Finger Painting with Planets

 Yuri’s Night

Movie

Examples of Visual Output

Examples of Visual Output

Examples of Visual Output

Examples of Visual Output

Examples of Visual Output

Examples of Visual Output

Examples of Visual Output

Double Vision

 Collective of dancers, musicians, and media artists

 Free innovation within a particular theme

 First show’s theme was DNA

 Installation consisted of
Conway’s game of Life,
audience could add DNA
letters as patterns to it,
and the generations of cells
 would trigger music and
graphics

Double Vision – SpectraBall

 Dance pads used to control balls bouncing around in a maze

 Balls hitting the walls would trigger sounds in
4 speakers surrounding you - the sound location would
match the direction in which the wall was hit

Double Vision – Cellspace show

 Steering wheel controllers used in two installations:

– Art of Driving: drive around and “fire” graphics

– Bouncing off the Walls: drive around a maze, firing balls,
resulting in 4-channel music around you

Movie

DoubleVision – performing graphics

 Red Ink Studio – performing graphics with dancers and
musicians

Finger Fresco 2.0

 First attempt at playing music and generating graphics
simultaneously in an actual performance

 Used Fingerworks multitouch pads for playing music
(same controller built for performing graphics,
previously)

 Music keyboard controlled scales/chords

 Notes of the music triggered graphics

– Movie

LoopyCam

 Camera-based visual performance instrument

 Performer controls camera position and visual processing
with a single integrated device – a security camera
screwed onto a $10 game controller

 First version used a USB webcam, but lighting was
always an issue.

 Latest version uses a
security camera
which automatically
turns on LEDs in
low-light situations.

LoopyCam – how it works

 VVVV hosts FreeFrame plugins for visual effects

 One custom FreeFrame plugin records up to
8 video loops and controls their playback and positions

 KeyKit reads joystick buttons and sends OSC and MIDI
messages over to VVVV to control the effects and looping

 Extensive “chording”
of the buttons allows
a large number of
operations to be
performed with the
game controller’s
buttons

 First version restricted to 4 loops and quadrant

positioning

 Was used at a DoubleVision event – showed great

promise, especially for use with dancers

 Was installed in “automatic” mode in the window

of the ATA Theater for the entire month of

December, 2009, capturing and looping passers-by

 Lots of effort spent on making the installation

foolproof and able to run reliably, because I was 50

miles away.

LoopyCam Evolution

 FreeFrame plugin enhanced to allow more flexible

control and positioning of the loops

 Performances

– Loop Salad solo performance at Luggage Store

– This Here shows at Temescal Arts Center

– SHARE San Jose jams at Villa Montalvo

– With a Butoh dancer at Zeum in SF

– I, Norton opera at the SF Electronic Music Festival

LoopyCam Evolution

Galaxy – a Visual Music performance

 New Nothing Theater, part of Visual Music meetup

 Looping music played on a normal keyboard

 Graphics triggered by the notes of the music

 Graphics and music controlled by the “Finger Painting

with Planets” controller

 Graphics makes use of Python within a FreeFrame

plugin, allowing post-processing of the graphics with

other FreeFrame plugins

 Movie 1

 Movie 2

Loop Salad

 Combination of Galaxy and LoopyCam

 Visuals generated by Galaxy were projected, and also

fed to LoopyCam (in “automatic” mode) to be

processed and projected with a second projector

 Movie

Monolith 2.0

 Burning Man 2009 theme: Evolution

 2001 Space Odyssey monolith

 One side is a highly evolved musical instrument

– Two-person looper with over 100 controls

 The other side is a simple visual instrument

– Chalkboard and chalk

 Built in my back yard over the summer

 Controller panels are usable independently

Monolith 2.0 – the construction

 Built to withstand

80 mph winds

 All battery-powered

(swapped daily,

recharged with solar

panels at camp)

 Top had solar-powered

fans for ventilation

(though not really

necessary)

Monolith 2.0 – in my backyard

Monolith 2.0 on the playa

Monolith 2.0 – on the playa

Movie

Monolith 2.0 on the playa

Monolith 2.0 on Flickr

What’s the controller part all about?

 Two independent controllers

 Each one is a 5-track looper - 1 track each for

lead/bass/pads/drums/other

 The two loopers share tempo, scale, and

transpositions, so they don’t conflict musically

 Lots of labeled buttons to control:

 Loop length, fading out

 Chords, sounds, scales

 Saving/loading loops

 Audio effects (using one of the iGesture pads)

Monolith 2.0 – the controllers

 Korg Nanokeys

used as buttons

 M-Audio Trigger Fingers

used for drum pads

Buttons

 Originally was going

to use arcade buttons

 Worldwide shortage

of buttons due to release

of Street Fighter IV

 Korg Nanokeys are cheap

and come in black

 Convenient for labels

 Removed configuration

buttons and covered in

flexible acrylic for dust

Other Hardware

 Power consumption was a primary concern

 Asus Eeebox - Atom N270 running Windows XP,

hosting a total of 15 USB devices

 Edirol UA-20 audio interface

 Sonic Impact (T-class) amplifier and two 6x9 speakers

 FM transmitter

 Lights - EL-wire outlining the monolith, and gooseneck LEDs

 12 Volt deep-cycle batteries, swapped daily, charged with solar

 Battery 1: computer, amplifier, and both controllers (33 watts)

 Battery 2: EL-wire, lights, and FM transmitter

Software

 Keykit

 Handles all input: 4 Nanokeys, 4 iGestures, 2

Trigger Fingers

 MIDI looping

 Controls the 2 LCD displays

 Plogue Bidule

 VST hosting

 Excellent routing features

 Native Instruments

 Primarily FM8 (low CPU usage)

 Battery 3 for drums

Feedback and Lessons Learned

 Both sides were well-used

 Burners always draw outside the box

 Message boards on the playa are useful

 People had lots of fun with the looper

 At all hours of the day and night

 Many came back repeatedly

 Some people actually read labels

 Best feedback: non-musicians made music and

realized that they were the ones making it

LoopyCam 2

LoopyCam 2

 LCD display displays menus and status

 Now usable by people other than myself

 Number pad (with chording) allows more operations

 Cinder-based application

 Uses both Freeframe 1.0 (raster-based)

and FreeFrame 1.5 (OpenGL) plugins

Recent Focus

 3D continuous input with hands

 Third dimension can be:

- Pressure (Continuum, Eigenharp, Linnstrument, etc)

- Area (Fingerworks, Magic Trackpad, iPad)

- Vibration, Orientation (smart phones)

- Depth (Kinect)

Kinect !

 Inexpensive and ubiquitous

 Good resolution and robustness

 Easy to use from C

 Tolerant of dust (yay!)

 Intolerant of sunlight (boo!)

Space Palette - a 3D Instrument Interface

 Holes in a frame become 3D multitouch surfaces

 Any number of hands or objects, simultaneously

 Flexible layout allows many control possibilities

 Immediate access to different sounds/graphics

 Provides frame of reference for player and audience

 Larger visual footprint is more interesting to audience

 Immediately playable, no initial dexterity required

 Larger and less-restricted motion by player is relaxing and

expressive

Space Palette - Evolution and Variations

Movies

Burning Man 2011

Lightning in a Bottle 2011

SF Decompression 2011

LoopFest 2011

Symbiosis 2012

Burning Man 2012

bm2011_space_palette_all.mov
LIB_2011_space_palette.mp4
space_palette_decompression_2011.avi
loopfest2011_complete_TimThompson.mov
space_palette_symbiosis_2012.mp4
bm2012_space_palette_short.mp4

Controlling the Music

 Each large hole plays a different sound

 Horizontal position is pitch

– All notes forced onto a particular scale and key

– Typically two octaves across

 Vertical position controls timing quantization - “time frets”

– Three bands: one beat, half-beat, quarter-beat

 Depth position:

– Converted to MIDI aftertouch, used for vibrato, filtering, and mixing

 Small holes are buttons

– Performance UI - change key, scale, sounds, looping

– Casual UI – select presets

Controlling the Graphics

 Each large hole is an independent 3D drawing surface

 Each hole’s drawing has independent shape/color/motion

 Depth controls the size of graphics

 Small holes are buttons

– Performance UI - change color, shape, motion

– Casual UI – select presets

Types of Instruments

 Casual Instruments

– Prioritize fun and enjoyment

– Few or no instructions

– Immediate gratification, no learning curve

– Path to proficiency is nice to have, but not required

 Performance Instruments

– Prioritize proficiency and control

– Instructions or training usually required

– Proficiency requires practice, learning curve

– Visualizations (real or virtual) for audience are beneficial

Where does the Space Palette fit?

 As a Casual Instrument

– No learning curve: walk up, play, sound good

– Natural interaction, effortless, engaging

– Control over individual notes

– Players recognize that they’re the ones controlling it

 As a Performance Instrument

– Physical presence is more visible and entertaining

– Performer’s larger movement engages the audience

– More obvious correlation of physical actions to output

– Frame of reference allows more and better control

Where does the Space Palette fit?

 Both casual and performance?

– User interface is greatly affected by the choice

– A single physical interface can serve both

 Casual use is the current sweet spot

– Confirmed by several years at Burning Man and other events

– UI continues to be simplified, visual feedback added

 Performance use has been explored

– Several solo and collaborative performances

– Several UI style experiments (e.g. shift-select style)

– Open source MultiMultiTouchTouch allows others to explore

Initial Evolution - 2011

 Initial prototype: 4 regions

 A little more control: 7 regions, 8 buttons

 Lightning in a Bottle

 West Coast Controller Battle

– Tennis Ball !

 Simultaneous graphics using Processing (Java)

 Burning Man 2011

– Multi Multi Touch Touch theme camp

 MusicTech Summit, Venice Art Crawl, Decompression, etc

 MultiMulti

TouchTouch

Palette registration,

Blob detection,

TUIO generation

Design - 2011

User interfaces

for controlling

parameters

(Python or

 Browser-based) Generative

Visuals

(Processing)

MIDI looper

(KeyKit)

Plogue Bidule

(VST host)

Soft Synths

Depth

image

MIDI

OSC
Kinect

JSON

JSON

Projector

Speaker

TUIO

OSC

Recent Evolution - 2012

 Oval version – 4 regions, 12 buttons

 FreeFrame plugin inside Resolume

– Eliminates KeyKit and Processing

– More complex visual effects using other FreeFrame plugins

– Resolume can be controlled with OSC

– HTTP listener, JSON API = browser-based UI for parameter control

– Single OSC listener and looping mechanism, better synchronization

– Potential for interaction between graphics and music

 Python integration within FreeFrame plugin

– Interactive development, more robust error handling

– Live coding

– Easier code sharing and distribution

Design - 2012

Browser interface

for controlling

parameters

MultiMulti

TouchTouch Plogue Bidule

(VST host)

Soft Synths Palette registration,

Blob detection,

TUIO generation

Depth

image

TUIO

OSC MIDI

OSC

Kinect

JSON

Projector

Speakers

Space Manifold

Plugin

=

Controller Logic

Graphic Sprites

MIDI Looping

Resolume
(FreeFrame Host)

FreeFrame

Plugin Effects

+

Things Observed and Learned

 Casual use vs. performance use influences the design a lot

 Small holes are magnetic

 Labels are rarely read

 Musicians know how to rest, listen, and be selective

– They aren’t the only ones who can do those things

 Looping can be confusing

 Multiple users is fun, but can be confusing

More Things Observed and Learned

 Correlation of graphics to hands is often not noticed due to

extreme visual effects

 People love seeing their hands (debugging display)

 Effect of depth often needs to be explained, but is immediately

appreciated

 Time-frets aren’t intuitive, but provide useful variety even if

you aren’t aware of how it works

 Hand motion tendencies limit the pitch range used:

– Depth-only with no up-down or left-right motion

– Up-down with no left-right motion

Comments about the Space Palette

 Most common:

– I want one in my living room.

– I could stay here all night.

 Most interesting:

– Why, it really opens up what an instrument is, right?

– You gotta try it, you gotta try it, you gotta try it!

– For those who can’t cross that barrier [of playing music],

they’re literally crossing that barrier [hands reaching through].

Software

 MMTT (MultiMultiTouchTouch)

 Resolume (FreeFrame host)

– Projection mapping and visual effects

 Space Manifold (FreeFrame Plugin)

– Receives TUIO/OSC, generates graphics AND music

– Looping mechanism

 Plogue Bidule (VST host)

 VST Soft Synthesizers

– Battery 3, Alchemy

 Browsers (local and remote)

– User interface (and JSON API) to control MMTT, Space Manifold

MultiMultiTouchTouch (MMTT)

 C++ program uses libfreenect to talk to Kinect

 Uses depth image only

 Blob detection using OpenCV

 Trainable interactively on new frames, holes of any shape

 Trainable without a frame, using a specially-colored image

 Browser interface to control it, using JSON over HTTP

 Output is TUIO (a standard multitouch format) over OSC (a

standard UDP protocol)

 Windows-only, source code freely available:

 http://multimultitouchtouch.com/dist

No Such Media

Tim Thompson

http://timthompson.com

me@timthompson.com

